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ABSTRACT 

The quick decrease at large momentum transfers of -. 

form factor and the quick increase of hadronic level density at large 

energies are presumably both manifestation of hadron compositnness. 

We conjecture that a simple inequality relation holds between these 

+- 
two phenomenon, motivate over conjecture by considering e e 

annihilation potential and many particle models, and discuss some of 

the concldsions which can be drawn if the conjecture is indeed true. 
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I. INTRODUCTION 

It is generally accepted that the fall off at large momentum 

transfers of the elastic form factors F,IQ‘) reflects the compositeness 

of the hadron H. In particular a finite (i.e., non-zero limit ) of FH(Q2) 

asQ2 - m is indicative of a finite wave function renormalization and 

the existence of an “elementary” component in H. More recently the 

relation 

n -1 
FHiQ2) - const/ (Q’) H 

Q2-m 

was conjectured”’ for a hadron H which is made of nH point-like 

constituents. 

Another manifestation of hadron compositeness is the rapid 

dN 
increase of density of hadronic states (resonances) - 

d IQ21 

F p( 1 Q2 j ) 

at the mass squared interval around ! Q2 a Thus, if the system H 

consists of n H “elementary” components, the same total excitation 

2 
mH 

can be achieved by indepent excitations of each of these 

components and we would expect (after subtracting out the common ems 

motion) roughly 

= [fiQ’)l 
n -1 

H (2) 

We would like to make in the following the conjecture that the 

general reiat ion 
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IF,(-Q')! 
2 

(3) 

where z will always indicate that the relation is only true asymptoti- 

cally when Q2 - 11. (Better definitions of asymptotic Q2 will be given 

below. i 

The main motivation for our conjecture (3) (besides the suggest- 

ive similarity of Eqs. ii) and (2)) is the fact that it holds in the statist- 

2,3 ical bootstrap model . 

We have been unable to prove the conjecture (3) in general. In 

the following section we will make plausible, by considering e+e- 

annihilation into hadrons, certain weaker versions of Eq. (3). There 

will involve in particular averaging of / FH(Q’i ’ 
2 

over a large range 

2 
of masses m, 

Only to the extent that 1 FH”(Q’)) 2 does not tend to have sys - 

tematically a stronger fall off in Q2 for bigger mH2 values, will we be 

able to extract useful information on / F(Q2) / 2 for the low lying states. 

In Sec. III we discuss this question in the framework of potential mod- 

els and suggest that this possibility is quite unlikely and ihat form 

factors of all excited states FH(Q’) have similar asymptotic bheaviours 

for Q2 
2 

>> m 
H ’ 

We next briefly discuss the conjectured relation for 

multiparticle systems. In Sec. IV we discuss the restriction which the 

relation (3) impososes on various models. Finally in Sec. V we spec- 

ulate on the possibility that a violation of (3) in a finite Q2 region may 
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I 
- 

be the cause for the rise of R(Q’!,the total e me, annihilation cross 

section into hadron relative to the point-like e+e- + p+p- cross section 

observed recently at C. E. A. 
4 

II. FORM FACTORS AND THE TOTAL COLLIDING efe- cross SECTION 

We assume the existence of a local electromagnetic current with 

well defined physical dimension (=3) under the scaling operation in the 

short distance limit. 
5 

The cross section for e+e- annihilation into 

hadrons -- via one photon -- can than be shown to satisfy 5, 6 

+ - c rN 

Otot 
e e - “yt’ + hadrons - m 

Q2 
(4) 

where C is a model dependent constant (= c ei2 when the sum ex- 
m 

i 
tends over all the fundamental fields coupled to J’em) and v is the fine 

structure constant. 

We note that there exists a more general “unitarity bound” 

f- 4lT 
%t e e 

- v - hadrons 5 - 

Q2 
which follows when we sum the series 

for the photon propagator with both lepton and hadron bubble insuctions. 

Since, however, we want to work consistently in lowest order in a the 

stronger bound (4) is required. 

Let us focus our attention now on final hadronic states arising 

from the formation of a pair of conjugate resonances H+H- followed by 

the subsequent decay of H+ and H- into stable particles. 1Ve first 

consider the idealized situation in which the interaction responsible 
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fcr this decay has been switched off4 so that the resonances H have 

widths rH smaller than the average spacings d between resonances. 

In this case there is no interference between amplitudes laeding to the 

same final state through different resonances and the interference with 

other possible non-resonant amplitudes is also suppressed. 

Remembering that the final states considered here form only a subset 

of all possible final states 
8 

we have 
9 

c 9 ~FHiQ2,i2. cyl$ 
SC 

ii hiQ m (51 

It is convenient to restrict ourselves to HfH- states with 

5 C(Q2)i-El E >a (6) 

In which case H+ and H- are for large Qt super relativistic in the over- 

allcms frame and the two body phase space factorin Eq. (5) can be 

ignored. Equation (5) yields then the relation 

/ F,(Q2)! ’ 5 N[ &] (7) 

where N[ (Q21i-e 
(Q2)i-E 

1 = p(m2) dm2 is the total number of states 

H with 2 mH 5 (&‘)I-’ , and the bar indicates averaging over all states 

This result is quite close to the conjectured relation. 3 in this range. 

In view of the quick increases of p(m 2, and possibly also the 

width rH’of the high lying resonances the condition r << d is likely to 

be strongly violated in all cases of physical interest, and many 
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interfering H+H- amplitudes contribute to the same final state. 

We note that if the resonances have finite widths rH ( const 

+ - 
and condition 6 holds the states H H are strongly boosted in the over- 

all ems, and decay only when a large distance -Q 
E 

apart. The decay 

processes of Hf and H- are, therefore, dynamically independent and 

should be described by separate factorizing unitary matrices. 
10 

If we assume only TH < const. mIr {for rH > > mH, it would 

make little sense to talk about the “particle H, ” and in the following 

p will specifically be restricted to states with I$ 5 crn~,} then the 

above boost and time dilation argument would apply providing however 

that we restrict ourselves for given Q2 to states H satisfying 

: mH2 5 C(Q')--' (6) 

Notice this last stronger constraint also insures a complete 

kinematical separation of the jets of stable final state particles which 

emerge from the decay of H+ H-. Indeed even in the extreme case 

i 
when H , say, decays into two pions which fly exactly along the same 

direction as the H+ H-, in the overall cms,the backward moving pion 

will not appear in the opposite hemisphere as long as (6’) holds and 

m > 0. il 

While the above arguments suggest that when condition 6 (or 6’ ) 

holds, we do not have to worry about interference between different 

pairs of backward-forward moving resonances leading to the same 
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final state, it is still true that for any -specific final forward jet 

state several forward (H+-s say) resonances could contribute. 

To the extent that !he basic picture which we have assumed 

(see Fig. 1) about breaking the process into two stages well separated 

in space time of afast production process followed by a slower inde- 

pendent decays of H’ and H-, we do not have to worry about such 

interferences. The reason is that we are not interested in one parti- 

cular final state, but rather in computing the total e’~e- annihilation 

cross sections summing over all states. Since the evolution of H+ or 

H- is given by a unitary matrix the possible interference terms vanish 

because of the orthogonality of the different states Hm, Hn 

c <H mlU/f=flU+!Hn> = CHmIUU+~Hn> 
; 

= <H,I Hn> - bmn 

Rapidly fluctuating couplings of consecutive resonances to a 

given final state are expected from simple potential (R matrix) consid- 

erations. This fact has been used by Margolis and coworkers I1 to 

argue away interference terms even for transitions to a given final 

state. In the above we have not used such an argument (obtaining 

admittedly weaker results 1. 

Our considerations above strongly suggest the relation 

1 FH(Q2) j (1-d 
average for m H2 < Q2 ?-- _’ 

1 
2 - 

N[(Q 1’7 
(7’ ) 
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or the stronger result (7) when resonances of finite width are concerned. 

III. CONSIDERATIONS OF SIMPLE POTENTLAL MODELS 

The main shortcoming of either Eq. (7) or (7’) is that it 

involves averaging 1 FH(Q2) i 
2 

over a large interval of resonance 

masses which grows with 0’. Indeed both relations seem to be a 

2 2 
statement on the behaviour of FH(m , Q ) as a function of ,“, the mass 

of H, rather than as a function of Q2, with Q2 having the role of allow- 

ing higher n? values to be probed. te rewrite Eq. (5) in a contin- 

uous form 

(Q2 ja 

J 
2 2 

dz p(m2) 1 *(m2, Q 11 5 cm 

where F is the average of 1 FH(Q2) 1 2 for hadrons of mass m”. 

The simplest way to satisfy the bound is to assume 

‘F(m2,Q2)] 2 - 1 
p(m2) 

g(Q2). Our choice of charge conjugate pairs 

(HT and H- instead of H+ and G-1 excludes this simple possibility 

since for all mH2 we have FH(Q2) 1 
Q2 -0 

= ?, and thus 7 or 7’ have to 

imply a fast fall off with Q2 for the massive states. 

To the extent that this fall off may be systematically faster for 

hadrons with larger m2 the averaged relations (7) or (7’ ) would not 

constrain at all I Fo(Q2) I 2 the form factor for the ground state or 

any fixed low lying state. By appealing to some specific examples as 

well as to certain general considerations in potential theory we would 

like to argue that the last possibility is quite unlikely, and all states 



9 NAL-Pub-73/55-THY 

2 
satisfying “k -~ EH < CQ2ja, with a 5 I being model (potential 1 

dependent , have essentially the same asymptotic behaviour with Q2. 

This contention is based on the fact that for Q2 - m the 

behaviour of 
+-+ 

FH(Q2) 5 J dre - iQ’r I&i2 (9) 

depends only on 1 d&-’ 1 2 near r - 0 which in turn reflects behaviour 

12 
of the potential V(r) at r - 0 and is, therefore, essentially independ- 

ent of the excitation EH of H. 

It is quite instructive to try and follow FH(Q2) for an excited 

state as Q 
2 

increases from zero where FH(0) = 1 towar?s asymptot- 

ic values. The values of the excited states’ rzH E 6 
mHtQ ) 

2 aQ2 Q2 =O 
tends to be larger than r o the radius of the ground state because, 

roughly speaking, the particle lies higher up in the attractive potential 

v(r) and its classical turning points are spaced farther apart. Also 

because Jik(r 11 2 has nr radial notes. FH(Q2) also tends to have nr 

oscillations before settling on its asymptotic fall off. 

A particularly prominent peak results when / Q / is matched 

to the dominant frequency of ! $k(r)j 2 which for smooth potentials is 

related to the wave number near the bottom of the well which is taken 

as the zero of the energy scale, i. e., for 
2 Q I 2mE . This is the 

H 

counterpart of thequasi-elaptic peak in the transition 0-n. 

rl 
Once Q > - = cn 

Cd> 
r where Cd> is the average spacing 
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between nodes we can expect, for general potentials, that each of the 

n humps in 
r 

j J’Hk I/ 2 scatters almost incoherently. If for Q z l/d 

we can still assume that the charges inside each hump still scatter 

coherently then we have 

1 FH(Q = cn,) j 2 = 2 ei2+ 
r 

where in the last step we assumed roughly equal humps. Since 

E =nz ~ for square-well-like potentials, the value of Q2 at which this 

incoherent hump scattering sets in is Q2> EH(zmH2). Omitting again 

1 ,k 0 state, nr is the total number of levels H with energy 5 EH, 

and we reproduce in this way the earlier results 7. 

The crucial point, however, is that once the incoherent scatter- 

ing and the presumably smooth asymptotic drop of FH(Q 
2 

) have set in, 

FH(Q2) tends to lie on or close to the same asymptotic curve as 

Fo(Q2) and not systematically lower -- so that the bounds (7) and (7’) 

are indeed bounds for FoiQ’), (see Fig. 7.1. We obviously cannot 

prove this statement in general. Let us rather examine three cases 

Coulomb, Harmonic oscillator and square wells potentials for which 

closed expressions for FH(Q2) exist. 

Coulomb Potential 

Writing the hydrogen function as R rim(r)) =Cn Be 

where p-r/n we can readily find the form factor by summing a series 
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of successive derivative of the ground state form factor. Since the 

latter behaves like an inverse power the asymptotically leading term is 

obtained by taking no derivatives (i. e. , the zeroth order term in the 

polynomial ). The coefficient- of this term which gives us then the 

asymptotic ratio of Fn(Q2)/FoiQ2) is simply the value of Rno(0). Using 

the explicit expression it is readily found to be 1 
- and hence: 

inI3 

! Fn 
COUl (Q2)/ F. cou1(Q2)! 2 z, + (11) 

n 

The last result confirms our expectation that all form factors have the 

same asymptotic behaviour. The rather fast drop off of the ratio with 

n reflects the fact that the nth state keeps expanding out very fast 

so that the value of the wave function at the origin drops accordingly. 

In the present case, however, the inequality does not really 

constrain the asymptotic behaviour of FHiQ2) for large Q2. Indeed 

‘it does not provide really an adequate test for our conjecture on the 

connection between F,(Q’) as Q2 - - m and pn(Q2) as Q2+ m 

simply because there are no bound states in this limit. Nonetheless, 

the fact that the discrepancy between Fn(Q?) and Fo(Q2) at asymptotic 

Q2 could be completely ascribed to the expanding volume of the wave 

function is encouraging. 

The above example suggests that we consider potentials which 

can yield infinite binding, to which we proceed next. 
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Harmonic Oscillator Potentials (One Dimensional) 

The wave functior,s are U,(X) = ( 1T + inn!)’ IIn(X)e-fX‘. 

The form factors Fn(QL) can again be written as a polynomial in 

a - operating on the form factor of the ground state F,(Q’r = e -Q2 

aQ2 

. 

In this case the leading asymptotic term is obtained by taking the max- 

imal number of derivatives (n) corresponding to the term 
(x2)* 

’ n 

in / U,(X) 1 2, IHn(X)12 = 22n(X2)n+ . ...). 
n? 2. n! 

This gives 

2n 
Fn( !J2) = +& e-Q 

2 
(12) 

In this particular case Fn(Q2)/ Fo(Q2) is actually rising asymptotically. 

It is amusing to note that Fo(Q2) z Fn(Q2) for Q2z n z E n’ 

Infinite Square Well Potential (One Dimensional) 

The form factor for the nth excited state is (we~take the well to 

extend between -+ and ‘+ ) 

F,(Q) ; f 1 
sin(Q+2n)z + - 

1 = 2 
2n+Q 4 2n-Q sin(2n-Q)z 4 + Q sin* 4 ( 1 3) 

and we realize that all F,(Q) have again the same asymptotic behaviour 

as Q2>> n 
2 

= CE 
n’ 

A feature which seems to be peculiar to this case is that the 

form factors keep oscillating indefinitely. It presumably reflects the 

infinitely sharp rise in the potential and is not expected to be true in 
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more physical models. 

IV. MANY PARTICLE SYSTEMS 

Cur discussions in the framework of potential models did not 

incorporate the important feature that hadrons may be made of a large 

(or even indefinite) number of constituents. It is very difficult to test 

for the correctness of our conjecture (31 in a genuine many body 

(i. e. , field theoretic) framework. We will attempt, however, to see 

qualitatively by considering a very simple example how the density of 

states p(E) and the form factor F(Q2) evolve as we go to systems 

with more and more constituents. 

Consider a nonrelativistic three-body system with a given total 

energy E. If a two-body subsystem (say, a and b) has a relatively 

stronger binding then we could roughly describe the system as an ab 

cluster bound to the remaining particle c: 

+(z,<,;) = hi(i1(~-$*hj(2)(a%cm - c’) (14) 

where aTcm is the coordinate of the center of mass of the ab system. 

Any of the above wave functions corresponds to a partition 

E = E’;’ + .(;) 

of the available energy into excitation of the ab (h (‘1)cluster and the 

(ab)-c(h(2)i system. The level density of the 3 body system is 
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p(E) = J- dE(j’ ,j~(~) p,(~(i’ p2(E(2’) &I’+ E(2) - E) (15) 

where p 
1’ 

p2 are the level densities for the two subsystems. Assuming 

that the integrand peaks strongly for a particular division E (1) = E. 

#) = E _ E(O) we can roughly estimate 

p(E) = p(?EO) p(‘)(E-E”) AE (16) 

where the ratio Eo/ E-E0 will depend on the specific p k ’ and pi”. 

Let us next turn to the form factor of the 3 body system. Since 

we are interested in the additional decrease of form factors because 

of the compositeness of the ab system we assume that the charge 

resides in. say, a. Also to eliminate recoil, we assume c to be 

infinitely heavy. The charge distribution is given from Eq. (16) by 

the convolution of two distributions, /h(‘)12and ih( and hence 

the form factor is given by a product 

/ F(~2)/ 2 - 1 F(‘)(Q~) 1 2 . 1 F(2)(Q2) / ’ (17) 

The last equation is the familiar expression for the form factors 

of the deutron. It simply says that in order for the three body system 

not to break when particle (a) is hit we have to first make sure that 

the (ab) svstem does not dissociate (probability ! F (y&2) I 2 
I for that) 

and next treating the (ab) system as a single cluster we have to make 
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sure that it does not tear away from (c), and the probability for that is 

IF (2)(Q2)! 2. 

Suppose now that the conjectured ine quality (3) holds for each 

of the subsystems (1) and (2) separately. Equations (16) and (17) then 

imply that 1 F(Q2)1 2 

~(4~) 

will be smaller yet for the complete three-body 

system. The inequality does, therefore, pass this simple consistency 

check as we increase the complexity of our system by joining simpler 

systems. 

At this junction we would like to make an amusing observation 

on the large t behaviour of hadron collisions. An important distinction 

between this case and the electromagnetic form factor with which we 

were dealing so far is that now the large momentum Q can be imparted 

to the composite hadron 1-I in more than one step. Let us consider 

again an idealized situation in which H consists of two subsystems 

A and B which are only weakly linked together so that we have 

‘“H 
=m +m 

A B’ 
Again the most likely partition will be that which 

maximizes pAtmA) p ( ~ %I = p(m). Assume that Q the momentum 

transfer is surely transverse. If we want the hadron H to remain 

intact in the scattering we should impart to A and B the same 

transverse boosts (see Fig. 3). The momentum transfers to the 

subsystems should. therefore, satisfy 
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since 

QA +Q, =Q 

and 

FH(Q) = FA(QA' FB(QB) 

We see that the evolution of densi~ty of states and form factors as we 

go to more composite states (“A+B-HI’) is such that the conjectured 

inequality (3 1 may actually he an asymptotic equality for “hadronic !I 

form factors. 

V. CONSEQUENCES FOR MODELS 

The assumption that the inequality (3) (or even the weaker 

version (4’ 1) apply asymptotically has several applications in general 

and in the context of various particular models which we will enumerate. 

Dual Models 

As is well known, one of the important predictions of dual 

models I3 -- which holds in a very large class of statistical models 2,3 -- 

is the exponential rise 

p(m2) = mLYe 
m/T 

C 118 ) 

of density of states. It reflects the large number of ways in which we 

can partition the total excitation of the system between the different 

modes of an harmonic string 

2 
m z 

k=O 
nkk+O1l) ( 19) 



17 NAL-Pub-73/55-THY 

where n 
2 

k are non-negative integers and m (rather than m) is the 

relevant quantity because of the lEnearly rising trajectories. Thus, 

even if we adopt only the weaker bound suggested by 17’) 

F(Q2) 2 
1 

2 b-E 
-UQ ) 

1 
p[(Q')'- ‘1 

=e 

we see that simple power fall-off of form factors suggested by simple 

minded applications of the beta function expression to form factor 

calculations are inconsistent. A particularly intriguing possibility is 

to speculate that this inconsistency is related to the failure of dual 

models to incorporate one basic ingredient of the above-discussion-- 

namely, the existence of local currents. 
(14) 

Parton Models 

Asymptotic power behavior of form factors can quite naturally 

be incorporated into par-ton models. 
12 

Our conjecture then suggests 

that such models have power behaved asymptotic density of states. 

This is readi~ly verified for the simple prototype of par-ton models x?,here 

the system of energy m2 consists of ln(m’) partons distributed 

roughly uniformly al.ong the rapidity axis. 
16 

By the dilation arguments 

the !evel spacing for successive partons tends therefore to increase in 

a geometric proportion 
12 hV with roughly a fixed ratio r = e ” where 

4yz<y -JJ 
n-l 

>. 
n 

The number of levels :.s therefore, given by a 

modified partitioning problem 
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m = ’ C\rk r>l,nk=0,1,2,.... (20) 

The number of combinations in this case is a power of m2. 

The Asymptotic Lower Bound on F(Q2) 

Elementary arguments based on the analytic properties of 

F(Q’)(in particular,the fact that it has only a right hand cut) imply the 

asymptotic lower bound 

- 
2 

F(Q) > c e 
-dQ2 

H (7.1) 

It has been subsequently shown by A. Jaffe that this bound follows 

actually from axiomatic field theory. 

It is amusing to note that our conjectured relation (3) correlates 

this limit with the following upper bound on the density of states 

(22) 

This is indeed the situation in the case of the statistical model where 

both relations are satisfied with = sign (within powers of m2 or Q2). 

A violation of the last inequality would, in particular, negate the 

possibility of the existence of a consistent statistical picture of 

hadrons. It is very intriguing to ask if there is any more direct and 

deeper connection between the elements of the proof of the form factor 

bound (22) and that last observation. 
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VI. SPECULATIONS ON RISIlXG R(Q’) 

Recent experimental data from CEA4 suggest that over the 

range of Q2 = 10-20 “;V; 
H 

R(Q2) the ratio of e+e- + “y” - hadron 

to the “point-like” (e+e- -v+p-) cross section is not constant, but 

rises significantly. In the framework of the models with scaling 

which we assume it means that the region where Eq. (4) applies has 

not been reached. One possible interpretation of this is that the 

bound (3) has actually not been satisfied over this range. This can 

happen for example if the density of states rises exponentially. This 

would presumably be true also in the sector of states with the quantum 

number of the nucleon. On the other hand, a power behaviour (the 

2 2 
“dipole formula”) can fit within z 40% 1 FN(Q ) 1 over a very large 

spaces-like range of Q2, 25 GeV2z / Q2 / 2 4GeV’. 4’ To the extent 

that the same relatively slow fall off occurs in the time-like direction 

::: 
and is true also for all N s , a’s, etc., we: would expect the bound (3) 

to be temporarily violated. Obviously, this is hardly an explanation 

of the rise. In particular , it is not necessary to invoke N+ states 

since the n and other mesonic states could have even a slower fall off 

of their form factors (say, = 
1 

2) for a large Q2, and have an 
Q 

exponentially increasing density of states. It is interesting, however, 

to speculate that the opening of many N+ @ channels is the reason 

for the rising R(Q’)~, 19 It would in particular require that final states 
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in e+e- collisions in this Q2 range tend to include N Npairs. 

VII. SUMMARY 

In the above we have made a speculation on an asymptotic 

inequality between the asymptotic behaviour of form factors and 

density of states. We have tried to motivate this connection by con- 

f- 
siderions of e e annihilation to a pair of hadronic resonances, by 

using examples and intuition from potential models, and even more 

heuristic arguments for multi-body systems. If true the conjectured 

inequality will provide constraints on various theoretical models which 

attempt to predict the form factors. 
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Fig. 1 

Fig. 2 

Fig. 3 

FIGURE CAPTION 

A schematic description of the separate H+H- 

production and decay in e’e- annihilation into 

hadrons. 

A typical expected behaviour of the form factor of 

the ground state and an excited state. 

A two-stage scattering from a loosely bound 

systems A and B. 



- 

1’ / 
I/ 0 

\ - \ 
\ 

FIG. 1 



Y 

FIG. s 



A 

FIG. 3 


